Author:
Kazianka Hannes,Pilz Jürgen
Abstract
Determining the optimum number of components to be retained is a key problem in principal component analysis (PCA). Besides the rule of thumb estimates there exist several sophisticated methods for automatically selecting the dimensionality of the data. Based on the probabilistic PCA model Minka (2001) proposed an approximate Bayesian model selection criterion. In this paper we correct this criterion and present a modified version. We compare the novel criterion with various other approaches in a simulationstudy. Furthermore, we use it for finding the optimum number of principal components in hyper-spectral skin cancer images.
Publisher
Austrian Statistical Society
Subject
Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献