A Corrected Criterion for Selecting the Optimum Number of Principal Components

Author:

Kazianka Hannes,Pilz Jürgen

Abstract

Determining the optimum number of components to be retained is a key problem in principal component analysis (PCA). Besides the rule of thumb estimates there exist several sophisticated methods for automatically selecting the dimensionality of the data. Based on the probabilistic PCA model Minka (2001) proposed an approximate Bayesian model selection criterion. In this paper we correct this criterion and present a modified version. We compare the novel criterion with various other approaches in a simulationstudy. Furthermore, we use it for finding the optimum number of principal components in hyper-spectral skin cancer images.

Publisher

Austrian Statistical Society

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Controlled accuracy Gibbs sampling of order-constrained non-iid ordered random variates;Monte Carlo Methods and Applications;2022-10-08

2. Generalized spatial stick-breaking processes;Communications in Statistics - Simulation and Computation;2020-04-01

3. Multivariate spatial modelling through a convolution-based skewed process;Stochastic Environmental Research and Risk Assessment;2019-02-21

4. Survey on establishing the optimal number of factors in exploratory factor analysis applied to data mining;WIREs Data Mining and Knowledge Discovery;2018-12-04

5. Functional Brain Imaging Synthesis Based on Image Decomposition and Kernel Modeling: Application to Neurodegenerative Diseases;Frontiers in Neuroinformatics;2017-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3