Author:
Chaturvedi Ankita,Singh Dr. Sanjay Kumar,Singh Dr. Umesh
Abstract
The article addresses the problem of parameter estimation of the inverse Lindley distribution when the observations are fuzzy. The estimation of the unknown model parameter was performed using both classical and Bayesian methods. In the classical approach, the estimation of the population parameter is performed using the maximum likelihood (ML) method and the maximum product of distances (MPS) method. In the Bayesian setup, the estimation is obtained using the squared error loss function (SELF) with the Markov Chain Monte Carlo (MCMC) technique. Asymptotic confidence intervals and highest posterior density (HPD) credible intervals for the unknown parameter are also obtained. The performances of the estimators are compared based on their MSEs. Finally, a real data set is analyzed for numerical illustration of the above estimation methods.
Publisher
Austrian Statistical Society
Subject
Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献