The Modelling of a Cure Fraction in Bivariate Time-to-Event Data

Author:

Wienke Andreas,Locatelli Isabella,Yashin Anatoli I.

Abstract

Three correlated frailty models are used to analyze bivariate timeto- event data by assuming gamma, log-normal and compound Poisson distributed frailty. All approaches allow to deal with right censored lifetime data and account for heterogeneity as well as for a non-susceptible (cure) fraction in the study population. In the gamma and compound Poisson model traditional ML estimation methods are used, whereas in the log-normal model MCMC methods are applied. Breast cancer incidence data of Swedish twin pairs illustrate the practical relevance of the models, which are used to estimate the size of the susceptible fraction and the correlation between the frailties of the twin partners. We discuss future directions of development of the methods and additional thoughts concerning their advantages and use.

Publisher

Austrian Statistical Society

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new class of bivariate Sushila distributions in presence of right-censored and cure fraction;Brazilian Journal of Probability and Statistics;2023-03-01

2. Survival analysis of women breast cancer patients in Northwest Amhara, Ethiopia;Frontiers in Oncology;2022-12-19

3. Correlated Frailty Models;Modeling Survival Data Using Frailty Models;2019

4. Discrete and continuous bivariate lifetime models in presence of cure rate: a comparative study under Bayesian approach;Journal of Applied Statistics;2018-07-12

5. Cure Frailty Models;Wiley StatsRef: Statistics Reference Online;2017-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3