Author:
Nugroho Didit Budi,Mahatma Tundjung,Pratomo Yulius
Abstract
This study evaluates the empirical performance of four power transformation families: extended Tukey, Modulus, Exponential, and Yeo--Johnson, in modeling the return in the context of GARCH(1,1) models with two error distributions: Gaussian (normal) and Student-t. We employ an Adaptive Random Walk Metropolis method in Markov Chain Monte Carlo scheme to draw parameters. Using 19 international stock indices from the Oxford-Man Institute and basing on the log likelihood, Akaike Information Criterion, Bayesian Information Criterion, and Deviance Information Criterion, the use of power transformation families to the return series clearly improves the fit of the normal GARCH(1,1) model. In particular, the Modulus transformation family provides the best fit. Under Student's t-error distribution assumption, the GARCH(1,1) models under power transformed returns perform better in few cases.
Publisher
Austrian Statistical Society
Subject
Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Modeling the volatility of FTSE100 index returns using realized GARCH model with jumps;PROCEEDING OF THE 1ST INTERNATIONAL CONFERENCE ON STANDARDIZATION AND METROLOGY (ICONSTAM) 2021;2022