GARCH Models under Power Transformed Returns: Empirical Evidence from International Stock Indices

Author:

Nugroho Didit Budi,Mahatma Tundjung,Pratomo Yulius

Abstract

This study evaluates the empirical performance of four power transformation families: extended Tukey, Modulus, Exponential, and Yeo--Johnson, in modeling the return in the context of GARCH(1,1) models with two error distributions: Gaussian (normal) and Student-t. We employ an Adaptive Random Walk Metropolis method in Markov Chain Monte Carlo scheme to draw parameters. Using 19 international stock indices from the Oxford-Man Institute and basing on the log likelihood, Akaike Information Criterion, Bayesian Information Criterion, and Deviance Information Criterion, the use of power transformation families to the return series clearly improves the fit of the normal GARCH(1,1) model. In particular, the Modulus transformation family provides the best fit. Under Student's t-error distribution assumption, the GARCH(1,1) models under power transformed returns perform better in few cases.

Publisher

Austrian Statistical Society

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling the volatility of FTSE100 index returns using realized GARCH model with jumps;PROCEEDING OF THE 1ST INTERNATIONAL CONFERENCE ON STANDARDIZATION AND METROLOGY (ICONSTAM) 2021;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3