A Bivariate Index Vector to Measure Departure from Quasi-symmetry for Ordinal Square Contingency Tables

Author:

Ando Shuji

Abstract

This study proposes a bivariate index vector to concurrently analyze both the degree and direction of departure from the quasi-symmetry (QS) model for ordinal square contingency tables. The QS model and extended QS (EQS) models identify the symmetry and asymmetry between the probabilities of normal circulation and reverse circulation when the order exists for arbitrary three categories. The asymmetry parameter of the EQS model implies the degree of departure from the QS model; the EQS model is equivalent to the QS model when the asymmetry parameter equals to one. The structure of the EQS model differs depending on whether the asymmetry parameter approaches zero or infinity. Thus, the asymmetry parameter of the EQS model also implies the direction of departure from the QS model. The proposed bivariate index vector is constructed by combining existing and original sub-indexes that represent the degree of departure from the QS model and its direction. These sub-indexes are expressed as functions of the asymmetry parameter under the EQS model. We construct an estimator of the proposed bivariate index vector and an approximate confidence region for the proposed bivariate index vector. Using real data, we show that the proposed bivariate index vector is important to compare degrees of departure from the QS model for plural data sets.

Publisher

Austrian Statistical Society

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3