3D TiO2 modified with reduced graphene embed into polyvinyl alcohol: photoanode electrode for oxygen evolution reaction

Author:

TEZCAN Fatih1ORCID,DEMİR Didem2ORCID

Affiliation:

1. TARSUS UNIVERSITY, TARSUS VOCATIONAL SCHOOL, DEPARTMENT OF TECHNICAL PROGRAM

2. TARSUS UNIVERSITY

Abstract

The photocatalytic hydrogen production from water splitting using solar energy is one of the promising trend research topics within the scope of green energy production. A photoelectrochemical set up consists of photoelectrode materials that directly uses photon energy convers water to hydrogen and oxygen. The photoelectrodes are photoanode and photocathode materials n-type and p-type semiconductor, respectively. In this study, the 3D TiO2 photoanode surface was modified by coating it with reduced graphene (rG) added polyvinyl alcohol (PVA) gel. PVA synthetic polymer with thermal stability, mechanical stability and low cost was preferred to provide distribution of rG material on 3D TiO2 active surfaces. In this context, different amounts of rG (2.5, 5, 10 and 20%, based on polymer weight) impregnated with PVA gel coated on the 3D TiO2 semiconductor surface were investigated. The solar light absorption behaviour and molecular interactions of the different amounts of rG in PVA on 3D TiO2 semiconductor were monitored by UV-vis and Raman spectrometer. A photocatalytic performance of photoelectrodes were conducted by Electrochemical Impedance spectroscopy (EIS), linear sweep voltammetry (LSV) and chronoamperometric measurement under 100 mW cm-2 solar light. Raman spectrum showed dispersion of RG in PVA. EIS measurement showed that the polarization resistance (Rp) increased in 3D TiO2 with only PVA coating, while the addition of rG to PVA caused a decrease in Rp at the semiconductor/electrolyte interface under sunlight. Furthermore, LSV and chronoamperometric measurement concluded that the increased amount of rG added to PVA increased the photoresponse of 3D TiO2 up to the limit rG value.

Funder

Tarsus University

Publisher

International Journal of Chemistry and Technology

Subject

General Medicine

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3