Predicting Rice Production using Autoregressive Integrated Moving Average Model

Author:

BHARATI R C,SINGH ANIL KUMAR

Abstract

A study was conducted on time-series data on rice production in India. Box-Jenkins Autoregressive Integrated Moving Average (ARIMA) time-series process was considered for predicting country's rice production using the time series data from 1950–51 to 2017–18. Data from 1950–51 to 2014–15 were used for model development and three years data from 2015–16 and 2017–18 were kept for validation The augmented Dicky Fuller test was applied to test stationarity in data set. Root mean square error. Based on ACF and PACF, the model was defined and tested for its suitability. Akaike information criterion and Bayesian information criterion were used to judge the suitability of the model to be fitted. The performance of the fitted model was examined using mean absolute error, mean percent forecast error, root mean square error and Theil's inequality coefficients. IMA (0, 1, 1) model performed well for forecasting purposes. The percent prediction error for the last three years i.e. from 2015–16 and 2017–18, was below 3%. The predicted values along with their standard errors up to the year 2099, were also obtained using the model.

Publisher

Society for Upliftment of Rural Economy (SURE)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3