Affix-based Distractor Generation for Tamil Multiple Choice Questions using Neural Word Embedding

Author:

Murugan Shanthi, ,S R Balasundaram,

Abstract

Assessment plays an important role in learning and Multiple Choice Questions (MCQs) are quite popular in large-scale evaluations. Technology enabled learning necessitates a smart assessment. Therefore, automatic MCQ generation became increasingly popular in the last two decades. Despite a large amount of research effort, system generated MCQs are not useful in real educational applications. This is because of the inability to produce the diverse and human alike distractors. Distractors are the wrong choices given along with the correct answer (key) to confuse the examinee. Especially, in educational domain (grammar learning) the MCQs deal with affix-based or morphologically transformed distractors. In this paper, we present a method for automatic generation of affix-based distractors for fill-in-the-blanks for learning Tamil Vocabulary. Affix-based distractor generation relies on certain regularities manifest in high dimensional spaces. We investigate the quality of distractors generated by a number of criteria, including Part-Of-Speech, difficulty level, spelling, word co-occurrence, semantic similarity and affixation. We evaluated our proposed method in grammar based Multiple Choice Questions (MCQs) dataset. The result shows that affix-based distractors, yield significantly more plausible outcomes in certain grammar based questions.

Publisher

Aesthetics Media Services

Subject

General Arts and Humanities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3