Determination of Exposure during Handling of <sup>125</sup>I Seed Using Thermoluminescent Dosimeter and Monte Carlo Method Based on Computational Phantom

Author:

Poorbaygi HoseinORCID,Salimi Seyed Mostafa,Torkzadeh FalamarzORCID,Hamidi Saeid,Sheibani Shahab

Abstract

Background: The thermoluminescent dosimeter (TLD) and Monte Carlo (MC) dosimetry are carried out to determine the occupational dose for personnel in the handling of <sup>125</sup>I seed sources.Materials and Methods: TLDs were placed in different layers of the Alderson-Rando phantom in the thyroid, lung and also eyes and skin surface. An <sup>125</sup>I seed source was prepared and its activity was measured using a dose calibrator and was placed at two distances of 20 and 50 cm from the Alderson-Rando phantom. In addition, the Monte Carlo N-Particle Extended (MCNPX 2.6.0) code and a computational phantom with a lattice-based geometry were used for organ dose calculations.Results and Discussion: The comparison of TLD and MC results in the thyroid and lung is consistent. Although the relative difference of MC dosimetry to TLD for the eyes was between 4% and 13% and for the skin between 19% and 23%, because of the existence of a higher uncertainty regarding TLD positioning in the eye and skin, these inaccuracies can also be acceptable. The isodose distribution was calculated in the cross-section of the head phantom when the <sup>125</sup>I seed was at two distances of 20 and 50 cm and it showed that the greatest dose reduction was observed for the eyes, skin, thyroid, and lungs, respectively. The results of MC dosimetry indicated that for near the head positions (distance of 20 cm) the absorbed dose rates for the eye lens, eye and skin were 78.1±2.3, 59.0±1.8, and 10.7±0.7 µGy/mCi/hr, respectively. Furthermore, we found that a 30 cm displacement for the <sup>125</sup>I seed reduced the eye and skin doses by at least 3- and 2-fold, respectively.Conclusion: Using a computational phantom to monitor the dose to the sensitive organs (eye and skin) for personnel involved in the handling of <sup>125</sup>I seed sources can be an accurate and inexpensive method.

Publisher

Korean Association for Radiation Protection

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Radiology, Nuclear Medicine and imaging,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3