Attribute Recognition of Buried Pipes Based on Multi-Trace Phase Features Using K-means Clustering for GPR Data Interpretation

Author:

Feng Deshan12,Wang Xun12,Zhang Hua12,Yang Jun3,Yuan Zhongming3,Zhang Lujun3,Liu Jie3,Zhang Bin12

Affiliation:

1. School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China,

2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Changsha, 410083, China,

3. Guangzhou Municipal Engineering Design Research Institute Co., Ltd., Guangzhou, 510060, China

Abstract

Accurate location and depth determination of underground pipes, especially the attribute recognition, are of great importance yet remake a challenging issue in municipal environments. Single-trace phase difference analysis remains a bottleneck due to its inherent and strong randomness in object identification. This paper developed a multi-trace phase difference analysis framework for ground-penetrating radar (GPR) data based on K-means cluster analysis technique and the theory of region of interest (ROI), which could serve as a new criterion for successful pipe attribute recognition. After improving signal-to-noise ratio of GPR data by using the preprocessing techniques, the connected components algorithms (CCA) based on image segmentation and morphological operation is performed to delineate the ROI. The K-means cluster analysis technique is further employed to efficiently extract the multi-trace phase statistical features for comprehensively evaluating the attributes of ROI. We verify this proposed framework by simulated GPR signals, laboratory data and field datasets. Results demonstrate that the proposed method can not only facilitate the attribute recognition of pipes, but also reduce the interpretation ambiguity of the pipe material even in the field site environment. Specifically, if the phase difference of pipe turns out to be even multiples of π, the target can be automatically identified as metallic-category pipes, whereas odd multiples of π, point to non-metallic-category pipes with a lower permittivity than that of the background. This criterion presents promising applicability in subsurface pipeline identification and attributes recognition, especially in constructing a more appropriate initial model of GPR full waveform inversion for survey in pipes.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Waveform Identification of Power Fault Recording Based on Instantaneous Characteristic Parameters;2023 4th International Symposium on Computer Engineering and Intelligent Communications (ISCEIC);2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3