Time Series Data Inversion and Monitoring Method for Cross-Hole ERT Based on an Improved Extended Kalman Filter

Author:

Liu Zhengyu1,Zhang Yongheng1,Zhang Xinxin1,Wang Huaihong2,Nie Lichao1,Xu Xinji1,Wang Ning1,Li Ningbo3

Affiliation:

1. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan, China

2. Shandong Coalfield Geological Planning and Investigation Institute, Jinan, China

3. Graduate School of Engineering, Nagasaki University, Nagasaki, Japan

Abstract

In recent decades, the DC resistivity method has been applied to geophysical monitoring because of its sensitivity to hydrogeological properties. However, existing inversion algorithms cannot give a reasonable image if fluid migration is sudden and unpredictable. Additionally, systematic or measurement errors can severely interfere with accurate object location. To address these issues, we propose an improved time series inversion method for cross-hole electrical resistivity tomography (cross-hole ERT) based on the Extended Kalman Filter (EKF). Traditional EKF includes two steps to obtain the current model state: prediction and correction. We improved the prediction step by introducing the grey time series prediction method to create a new regular model sequence that can infer the potential trend of underground resistivity changes and provide a prior estimation state for reference during the next moment. To include more current information in the prior estimation state and decrease the non-uniqueness, the prediction model needs to be further updated by the least-squares method. For the correction step, we used single time-step multiple filtering to better deal with the case of sudden and rapid changes. We designed three different numerical tests simulating rapid changes in a fluid to validate the proposed method. The proposed method can capture rapid changes in the groundwater transport rate and direction of the groundwater movement for real-time imaging. Model and field experiments were performed. The inversion results of the model experiment were generally consistent with the results of dye tracing, and the groundwater behavior in the field experiment was consistent with the predicted groundwater evolution process.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3