Time-Lapse Electrical Resistivity Tomography and Soil-Gas Measurements on Abandoned Mine Tailings Under a Highly Continental Climate, Western Siberia, Russia

Author:

Yurkevich Nataliya V.12,Bortnikova Svetlana B.1,Olenchenko Vladimir V.13,Fedorova Tatyana A.13,Karin Yuri G.1,Edelev Aleksey V.1,Osipova Polina S.1,Saeva Olga P.1

Affiliation:

1. Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, Russia

2. Novosibirsk State Technical University, Novosibirsk, Russia

3. Novosibirsk State University, Novosibirsk, Russia

Abstract

Mine tailings are a very active system in which the processes of oxidation, dissolution, and the re-deposition of substances occur in real-time. Time-lapse electrical resistivity tomography and soil-gas measurements have been used on abandoned mine tailings under a highly continental climate, Western Siberia, Russia. The electrical resistivity tomography method allows the structure of the tailings to be determined, namely, its electrophysical parameters, which are related to the chemical composition and geochemical characteristics of the subsurface substance. The aim of this work is to determine the variations in the geoelectrical zoning of sulfide-bearing mine tailings depending on fluctuations in environmental conditions, i.e., ground and air temperature, in conjunction with volatile compounds of environmental concern emanating from the tailings (SO2, CS2, C2H6S). The hourly observations revealed that the configuration of the geoelectrical section varies during the day. The concentration of gases in the surface air layer varied in accordance with the ambient temperature conditions. In general, the minimum gas concentrations were determined at night, and the increase in gas concentrations began when the temperature increased. The dependence of gas formation on temperature conditions differed during the daytime and nighttime. In warmer hours, gas concentrations are highest. At night, when there was a decrease in the temperature of air and then in the ground temperature, a local increase in the concentration of all measured gases occurred at the maximum temperature difference in the air (14.1 °C), and the ground remained relatively warm (20.8 °C). There is a close relationship between ground temperature, electrical resistivity, and the rate of gas production. Local anomalies with the greatest variation in electrical resistivity are associated with the zones that have the most active gas emanations.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3