Mapping Cation Exchange Capacity (CEC) Across Sugarcane Fields with Different Comparisons by Using DUALEM Data

Author:

Zhao Xueyu1,Wang Jie1,Zhao Dongxue1,Sefton Michael2,Triantafilis John3

Affiliation:

1. School of Biological, Earth and Environmental Sciences, Faculty of Science, UNSW Sydney, Kensington, NSW, 2052, Australia

2. Herbert Cane Productivity Services Ltd., Ingham, QLD, 4850, Australia

3. Manaaki Whenua Landcare Research, P.O. Box 69040, Lincoln, 7640, New Zealand

Abstract

The sugarcane growing soil in far-north Queensland is sandy, and infertile. To ensure productivity, nutrient guidelines recommend lime application rates based on soil cation exchange capacity (CEC). However, laboratory determination of CEC is expensive. Because CEC is often correlated with soil apparent electrical conductivity (ECa, mS/m) measured from electromagnetic induction (EM) instruments, ECa can be used to predict CEC. Using ECa may lead to uncertainty in prediction, but estimates of true electrical conductivity (σ, mS/m) generated from inversion of ECa, can be correlated with depth-specific CEC. In this study, we compared linear regression (LR) between ECa from a DUALEM-421S and CEC at specific depths ( i.e., topsoil [0–0.3 m], subsurface [0.3–0.6 m], subsoil [0.6–0.9 m] and deep subsoil [0.9–1.2 m]), with a LR of σ using a quasi-2d (q-2d) or quasi-3d (q-3d) inversion of DUALEM-421S ECa and CEC at all depths. The use of a multiple linear regression (MLR) to predict CEC, using σ with depth and location ( i.e., Easting and Northing) is also explored along with σ from the other EM products ( i.e., DUALEM-1S and DUALEM-21S). The minimum number of calibration sample locations ( i.e., n = 165, 150,…, 15) is also investigated. The LR between ECa ( e.g., 1mPcon) and CEC were very weak (R2 = 0.27) and weak (0.36) in the topsoil and subsurface, respectively, but moderate in the subsoil (0.57) and deep subsoil (0.67). The LR between σ, estimated from q-2d (R2 = 0.66) and q-3d (0.64) inversion of DUALEM-421S ECa, and CEC at all depths was moderate. In terms of prediction agreement, the Lin's concordance correlation coefficient (LCCC) was moderate for q-2d (0.79) and q-3d (0.75). Using a MLR with depth, coordinates and σ, led to an improvement in calibration using q-2d (R2 = 0.71) or q-3d (0.67), with prediction agreement substantial for q-2d (LCCC = 0.83) and moderate for q-3d (0.78), with comparable agreement from DUALEM-1S and DUALEM-2S (0.77) estimates of σ. The minimum number of calibration samples for a strong MLR R2 (>0.7) and substantial and good agreement was 15 for q-2d and 30 for q-3d, respectively. The final digital soil mapping of topsoil CEC developed using MLR and σ estimated from q-3d of DUALEM-421S ECa could be used to apply the Australian sugarcane industry lime application guidelines with areas with intermediate (3–6 cmol[+]/kg) and small (<3 cmol[+]/kg) topsoil CEC requiring 4 and 2.25 t/ha, respectively.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

Reference34 articles.

1. Mechanisms for Movement of Plant Nutrients from Soil and Fertilizer to Plant Root

2. Brady, N.C. Weil, R.R. , and Weil, R.R. , 2008, The Nature and Properties of Soils, 13th ed. Prentice Hall, Upper Saddle River, NJ.

3. Calcino, D.V. Schroeder, B.L. & Hurney, A.P. ( 2010, March). Extension and adoption of the ‘SIX EASY STEPS’ nutrient management program in sugarcane production in North Queensland. In Proceedings of the international society of sugar cane technologists ( Vol. 27, pp. 1– 10).

4. Cox, A. Ham, G. , and McMahon, G. , 1995, Review of sodic soils research in the Queensland sugar industry. https://elibrary.sugarresearch.com.au/handle/11079/757.

5. Occam’s inversion to generate smooth, two‐dimensional models from magnetotelluric data

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3