Integrated Agrogeophysical Approach for Investigating Soil Pipes in Agricultural Fields

Author:

Samad Md Abdus1,Wodajo Leti T.1,Rad Parsa Bakhtiari1,Mamud Md Lal1,Hickey Craig J.1

Affiliation:

1. National Center for Physical Acoustics (NCPA), University of Mississippi, University, MS, USA

Abstract

Soil erosion is one of the most significant challenges for soil management and agri-food production threatening human habitat and livelihood. Although soil erosion due to surficial processes is well-studied, erosion due to subsurface processes such as internal soil pipes has often been overlooked. Internal soil pipes directly contribute to the total soil loss in agricultural fields and impede agricultural sustainability. Locating, measuring, and mapping internal soil pipes and their networks are vital to assessing the total soil loss in agricultural fields. Their hidden and uncorrelated nature of subsurface occurrences constricts the applicability of manual and remote sensing-based detection techniques. Non-invasive agrogeophysical methods can overcome these limitations with detailed subsurface pictures and high spatial resolution. In this study, the applicability of three agrogeophysical methods including seismic refraction tomography (SRT), electrical resistivity tomography (ERT), and ground-penetrating radar (GPR) was tested at Goodwin Creek, an experimental field site with established internal soil pipes. SRT showed low P and S wave velocities anomalies in soil pipe-affected zones. ERT results indicated the location of soil pipes with high resistivity anomalies. However, both SRT and ERT lack resolution to identify individual soil pipes. GPR diffraction hyperbolas and their apexes however effectively identified individual soil pipes. The agrogeophysical anomalies for soil pipes were compared with the low penetration resistance of the cone penetrologger (CPL) results. Correspondence between low PR in CPL and agrogeophysical anomalies verify the locations of internal soil pipe-affected zones. Moreover, the fragipan layer is identified below the soil pipe-affected zone by all three methods.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editors’ Foreword;Journal of Environmental and Engineering Geophysics;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3