2D Inversion of DC Resistivity Method to Detect High-resistivity Targets inside Dams

Author:

Li Maofei1,DAI Qi2,Liu Shucai1,Liu Yaoning3

Affiliation:

1. The School of Resource and Geoscience, China University of Mine and Technology, Xuzhou 221116, Jiangsu Province, China

2. Tianjin Water Planning Survey & Design Company Limited, Tianjin city, 300000, China

3. Jiangsu Vocational Institute of Architectural Technology, Xuzhou city, 221000, Jiangsu Province, China

Abstract

As the first barrier of flood control, the integrity and continuity of dams are of the utmost importance. However, with the influence of natural weathering, running water erosion, and humanistic factors, various degrees of damage are prone to occur inside and outside dams. Therefore, it is necessary to detect the integrity of dams and evaluate their flood control capacity. Different from the previous detection of water-filled imperfect areas, we used numerical simulation and measured data analysis and considered the influence of actual noise to conduct DC resistivity detection and 2D inversion research on the high-resistivity imperfect areas existing in dams. The research results show that both the calculated apparent resistivity and the resistivity obtained by 2D inversion deviate from the real resistivity of the dam. A dam with a height less than 5 m has a relatively small influence on the 2D inversion results of the DC resistivity method, and the inversion results can accurately show the spatial information of the high-resistivity imperfect areas. The distance between the river and dam has a major influence on the inversion results, but the influence on the inversion results can be ignored when the distance is greater than 20 m in the model of this paper. The 2D inversion of the DC resistivity method can be used to detect high-resistivity imperfect areas of dams, and the 2D spatial information of the 3D geological bodies can be accurately obtained.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3