Estudio de la vida real sobre el modelado numérico de las arcadas temporales superiores e inferiores en imágenes de fondo de retina

Author:

Rodríguez-Villalobos Ángel Jonathan,Alvarado-Carrillo Dora ElisaORCID,Cruz-Aceves IvánORCID,Castellón-Lomelí Chrystian IránORCID,López-Montero Luis MiguelORCID,Hernández-González Martha AliciaORCID,Giacinti David Jaime

Abstract

Introducción: La alta prevalencia de Diabetes Mellitus tipo 2 en México ha posicionado a la retinopatía diabética como la principal causa de ceguera en adultos en edad productiva en México. Por ello, la detección oportuna de este padecimiento es una tarea prioritaria para el sistema público de salud. En el presente artículo se estudia el desempeño de un nuevo algoritmo para la determinación de la forma de la arcada temporal mayor de la retina, mediante el uso de técnicas de segmentación de imágenes y modelado numérico de curvas.    Método: La metodología propuesta emplea Filtros Gaussianos de Correspondencia que realzan la geometría de los vasos sanguíneos. Posteriormente, la estructura vascular es segmentada mediante la umbralización global de la imagen realzada. Dicha segmentación es utilizada como entrada para construir un modelo numérico de las arcadas temporales superior en inferior, utilizando funciones Spline.   Resultados: La evaluación de desempeño se realizó utilizando 136 imágenes de  pixeles. El algoritmo de segmentación automática de venas de la retina mediante el método GMF obtuvo un valor de Accuracy de 0.9852; el algoritmo de modelado numérico dio un resultado de 6.01 pixeles en la métrica de la distancia media al punto más cercano (MDCP). Otro estudio previo reportó 12.33 pixeles. Con respecto al tiempo, se reportó un tiempo promedio de 10.65 segundos por imagen.   Discusión: El método propuesto fue capaz de realizar eficientemente el modelado numérico de las arcadas temporales en imágenes de fondo de ojo. Los resultados demuestran que este método es una herramienta computacional útil para el diagnóstico de alteraciones en la anatomía del ojo.

Publisher

Universidad de LaSalle Bajio

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3