Joining Technologies and Solutions for Aluminum-based Battery Case Manufacturing

Author:

Kim YongORCID,Park Yeong-DoORCID

Abstract

Recently, considerable research has been conducted to identify suitable replacement for aluminum material used in producing lightweight car bodies, and accordingly, various welding processes have been investigated. However, no research has been conducted to optimize joining processes through experimental comparisons of the various welding and fastening processes for the aluminum battery cases used in hybrid electric vehicle. Therefore, this study conducted a joint quality comparison of nine joining processes for the aluminum overlap welding for 1.2 mm thick Al5052-H32 material. The tested joining processes were self-piercing rivet(SPR), arc welding, refill friction stir spot welding(FSSW), laser welding, spot welding, adhesive bonding, clinching, hybrid joining, and flow drill screw(FDS). The test results were used to assess manufacturing based on OEM production guidelines for field production application. Each joining process was evaluated in terms of investment cost, joint strength, endurance, productivity, and weldability under different weight factors. The SPR was the most competitive process among the nine joining processes, and arc welding, refill FSSW, and laser welding were considered alternative choices for the joining process for aluminum-based battery case manufacturing. By contrast, adhesive bonding, resistance spot welding, hybrid welding, clinching, and FDS were determined to be challenging processes for use as primary processes.

Funder

Ministry of Trade, Industry and Energy

National Research Foundation of Korea

Publisher

The Korean Welding and Joining Society

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study of Admittance Force Control for FSW of Hybrid Machine;Journal of the Korean Society of Manufacturing Technology Engineers;2023-04-15

2. Study on the Optimal Design of Column Rib Structure of Horizontal Machine Tool Using Topology Optimization Technique;Journal of the Korean Society of Manufacturing Technology Engineers;2023-02-15

3. Aluminum Arc Welding Technology to Improve Quality and Productivity of Electric Vehicles;Journal of Welding and Joining;2022-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3