Effect of Process Parameters and Nugget Growth Rate on Liquid Metal Embrittlement (LME) Cracking in the Resistance Spot Welding of Zinc-Coated Steels

Author:

Jin WooSungORCID,Lalachan ArunORCID,Murugan Siva PrasadORCID,Ji ChangwookORCID,Park Yeong-doORCID

Abstract

Although the influence of weld process variables on LME cracking was known to be significant, limited studies have been conducted on the effect of process variables with systematic approaches in the equivalent nugget growth behavior and heat input. This study aimed to identify the effect of weld process variables on LME sensitivity with the equivalent nugget diameter and underlying mechanism with induced tensile stress for cracking. Among the welds with equivalent nugget diameters in the combination of different welding current and time, higher LME sensitivity was observed with the high welding current and short welding time combination than that with the low welding current and long welding time combination for the equivalent nugget diameter. Because a high current and short time combination resulted in faster weld nugget growth than the low welding current and long welding time combination, it rapidly increased the surface temperature along with the cooling from the electrode. These combined effects induced a higher thermal gradient and thermally induced tensile stress on the weld surface, satisfying the conditions of the LME cracking. The simulation results also confirmed that the critical weld cycle time of the LME cracking (<i>t<sub>c</sub></i>), which is the cross point between the nugget growth diameter and a contact diameter of the electrode, could be different with the combination of the weld process variables with the equivalent weld nugget size. Therefore, <i>tc</i> can be applied for the sensitivity index of LME cracking of the resistance spot weldment considering complex weld variables.

Funder

Ministry of Trade, Industry and Energy

Publisher

The Korean Welding and Joining Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3