Abstract
This study investigated the effect of microstructural decomposition on the mechanical properties of additively manufactured Ti-6Al-4V by directed energy deposition. The formation of α’ martensite and α massive phase (αm) was observed in the deposited layers. The α’ and αm in the lastly deposited layer appeared as a needle-shaped and a sub-lamellar structure, respectively. However, the morphology of α’ and αm was decomposed in the lower layers due to the intrinsic heat treatment. Moreover, The heat conduction rate calculation showed that the lower powder feed rate generates more heat conduction. Therefore, the microstructure was further decomposed for the specimen with a lower powder feed rate. These phenomena consequently affected the mechanical properties and fracture behavior of the Ti-6Al-4V alloy.
Funder
Korea Evaluation Institute of Industrial Technology
Ministry of Trade, Industry and Energy
Publisher
The Korean Welding and Joining Society
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献