Prediction of Laser Welding Distortion in Cylindrical Shell Structures Using Direct Application of Inherent Strain

Author:

Yoon Ji-HongORCID,Yang Young-SooORCID,Kim Sung-HoonORCID,Lee Se HwanORCID,Park Jeong-UngORCID

Abstract

In this study, a simplified analysis method by directly applying inherent strain (DIS) at integration points to predict welding distortion of cylindrical shell structures was suggested. The 3D thermo-elastoplastic method demands substantial computational time. The strain as direct boundary (SDB) simplified method using virtual temperature encounters challenges in consecutive thermal structural analysis including welding distortion. The suggested method (that is, DIS) offers the advantage of enabling continuous thermal structural analysis after welding distortion analysis, with computational efficiency. To calculate inherent strain, lap laser welding with 2 mm and 2.6 mm SUS304 plates was performed, measuring fusion and heat-affected zone sizes via cross-sectional observations. Using the calculated inherent strain and our suggested direct input method, we conducted welding analysis and welding test on cylindrical shell structures. Comparison of welding distortion under same conditions revealed radial distortion difference within approximately 10%, corresponding with the experimental result and confirming a computational time reduction by over 2,000 times than those of thermo-elastoplastic analysis. Therefore, an efficient and accurate prediction of welding distortion was achievable through the suggested method.

Publisher

The Korean Welding and Joining Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3