Optimization of Aptamer-Based Electrochemical Biosensor for ATP Detection Using Screen-Printed Carbon Electrode/Gold Nanoparticles (SPCE/AuNP)

Author:

Mulyani Rahmaniar,Yumna Nida,Maksum Iman Permana,Subroto Toto,Hartati Yeni Wahyuni

Abstract

Electrochemical biosensors are used to detect adenosine triphosphate (ATP) levels, which are involved in a variety of biological processes, such as regulating cellular metabolism and biochemical pathways. Therefore, this research aims to develop an aptamer-based electrochemical biosensor with Screen Printed Carbon Electrode/gold nanoparticles (SPCE/AuNP) and collect data as well as information related to ATP detection. The modification of SPCE with AuNP increased the analyte’s binding sensitivity and biocompatibility. The aptamer was selected based on its excellent bioreceptor characteristics. Furthermore, aptamer–SH (F1) and aptamer-NH2 (F2) were immobilized on the SPCE/AuNP surface, which had been characterized using SEM, EIS, and DPV. Also, the ATP-binding aptamers were electrochemically characterized using the K3[Fe(CN)6] redox system and Differential Pulse Voltammetry (DPV). According to the optimization results using the Box-Behnken experimental design, the ideal conditions obtained from the factors influencing the experiment were the F1 concentration and incubation time of 4 µM and 24 h, respectively, as well as F1/F2/ATP incubation time of 7.5 min. Meanwhile, for the range of 0.1 to 100 µM, the detection (LoD) and quantification (LoQ) limits were 7.43 and 24.78 µM, respectively. Therefore, this aptasensor method can be used to measure ATP levels in real samples.

Publisher

Universitas Gadjah Mada

Subject

General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3