Synthesis, Spectroscopic, and Photophysical Studies of Phosphorescent Bis(2-(2,4-difluorophenyl)pyridine)Iridium(III) Complex Containing Derivative of 1H-1,2,4-Triazole Anchillary Ligand

Author:

Bain Nurul Husna As Saedah,Ali Noorshida MohdORCID,Juahir Yusnita,Hashim Norhayati,Md Isa Illyas,Mohamed Azmi,Kamari Azlan,Mohd Yamin Bohari

Abstract

A cationic complex of iridium(III), [Ir(2,4-F2ppy)2(F2bpyta)]PF6 utilizing 1,2,4-triazolepyridyl as an anchillary ligand modified with a 2,6-difluorobenzyl substituent was synthesized and characterized. The aromatic signals of pyridyltriazole and phenylpyridine proton were detected in the 1H-NMR spectrum between 10.00 and 7.00 ppm. Only one singlet peak was detected at 8.46 ppm H(8) shifted to the upfield, demonstrating that C5 was coordinated to the central iridium metal. The bands exhibited in the range of 1555–1431 cm–1 in the IR spectrum because of the C=C and C=N aromatic rings stretching pyridine, phenyl, and triazole vibrations. The UV-Vis absorption spectrum showed a slight and broad absorbance peak at lower energy at a lmax = 371 nm (e = 6129 M−1 cm−1) in the visible range due to 1MLCT and 3MLCT transitions. Blue emission was observed in the steady-state emission spectral of [Ir(2,4-F2ppy)2(F2bpyta)]PF6 and the other two previously synthesized iridium(III) complexes in CH2Cl2 solutions (air-equilibrated) at room temperature. The spectrum of luminescence for the [Ir(2,4-F2ppy)2(F2bpyta)]PF6 (lem = 461 nm) is blue-shifted when compared to the [Ir(2,4-F2ppy)2(hpyta)]PF6 (lem = 469 nm), but red-shifted when related to the [Ir(2,4-F2ppy)2(mbpyta)]PF6 (lem = 454 nm).

Publisher

Universitas Gadjah Mada

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3