Carbonization of Lignin Extracted from Liquid Waste of Coconut Coir Delignification

Author:

Widiyastuti WidiyastutiORCID,Rois Mahardika Fahrudin,Setyawan Heru,Machmudah Siti,Anggoro Diky

Abstract

Lignin as a by-product of the pulping process is less widely used for worth materials. In this study, the utilization of lignin by-product of the soda delignification process of coconut coir converted to the activated carbon by a simple precipitation method followed by the carbonization at various temperatures is presented. The by-product liquor of the soda delignification process having a pH of 13.4 was neutralized by dropping of hydrochloric acid solution to achieve the pH solution of 4 resulting in the lignin precipitation. The precipitated was washed, filtered, and dried. The dried lignin was then carbonized under a nitrogen atmosphere at various temperatures of 500, 700, and 900 °C. The dried lignin and carbonized samples were characterized using SEM, XRD, FTIR, and nitrogen adsorption-desorption analyzer, to examine their morphology, X-Ray diffraction pattern, chemical bonding interaction, and surface area-pore size distribution, respectively. The characterization results showed that the functional groups of lignin mostly disappeared gradually with the increase of temperature approached the graphite spectrum. The XRD patterns confirmed that the carbonized lignin particles were amorphous and assigned as graphitic. All samples had a pore size of 3–4 nm classified as mesoporous particles. This study has shown that the carbonization lignin at a temperature of 700 °C had the highest surface area (i.e. 642.5 m2/g) in which corresponds to the highest specific capacitance (i.e. 28.84 F/g).

Publisher

Universitas Gadjah Mada

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3