Superpixel-Based Stripe Noise Removal for Satellite Imageries

Author:

Kamirul ,Khairunnisa ,Ega Asti Anggari ,Dicka Ariptian Rahayu ,Agus Herawan ,Moedji Soedjarwo ,Chusnul Tri Judianto

Abstract

This work introduces a novel noise removal algorithm for satellite imageries based on superpixel segmentation followed by statistics-based filtering. The algorithm worked in three main steps. First, the noisy input image was divided into subregions by employing simple linear iterative clustering (SLIC)-based superpixel segmentation. Then, the statistical property of each subregion was calculated, including their standard deviations and maximum values. Last, an adaptive statistics-based stripe noise removal was performed for each subregion by constructing adaptive filter sizes according to calculated properties. The algorithm was tested using real satellite imageries taken by the LAPAN-A2 and LAPAN-A3 satellites. Its performance was then compared to three existing methods in terms of image quality and computation speed. Extensive experiments on two datasets of 3-channel images captured by the LAPAN-A2 satellite showed that the algorithm was capable of reducing the stripe pattern as measured using the peak-signal-to-noise-ratio (PSNR) metric without introducing additional artifacts, which commonly appeared on over-corrected regions. Moreover, compared to existing methods, the proposed algorithm ran 42 to 103 times faster and provided better image quality by 2.46%, measured using the structural similarity metric (SSIM). The code of this work and the datasets used for the testing are publicly available on www.github.com/dancingpixel/SPSNR.

Publisher

Universitas Gadjah Mada

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Satellite Image Denoising using Parameter Optimization with Bilateral Filter;2024 International Conference on Inventive Computation Technologies (ICICT);2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3