Low Budget Respirometer Chamber Design Based on Wireless Sensor Network

Author:

Muvianto Cahyo Mustiko Okta,Yuniarto Kurniawan,Lastriyanto Anang,Setiadi Lalu Arioki

Abstract

Fresh fruit respiration information is essential optimizing food storage systems. Meanwhile, respiration is defined as the process of oxygen production and carbon dioxide release during storage in a closed respiratory chamber. Therefore, this study aims to design a low-budget computerized respiratory chamber for enhancing fruit packaging and storage system. Real-time fruit respiration can be measured by applying wireless gas sensors network. The respirometer consisted of 3,600 mL glass jar with a screw stainless lid, while the electrochemical and non-dispersive infrared sensors were mounted on the cover of the glass jar for collecting data on the oxygen, carbon dioxide, and temperature during mangoes’ respiration. Arduino USB port was used to record all measured parameters consisting of oxygen (%) and carbon dioxide concentrations (ppm, as well as temperature in the respiration chamber. Additionally, a controlled cooling chamber was applied to maintain the temperature during storage, while data communication was supported by Xbee S2C based on radio frequency. According to the respirometer real-time reading, there was a decrease in oxygen concentration caused by increasing carbon dioxide release with temperature. The low-budget respirometer was used to measure the respiration rate and record the data through a wireless sensor network system. The data plot shows that the respiration rate increased as the storage temperature and the respiratory quotient ranged from 0.32-0.44.

Publisher

Universitas Gadjah Mada

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Developing IoT Wireless Sensor Network For Respiration Storage Chamber;2023 17th International Conference on Telecommunication Systems, Services, and Applications (TSSA);2023-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3