EFFECT OF PYROLYSIS TEMPERATURES ON COMPOSITION AND ELECTRICAL CONDUCTIVITY OF CARBOSIL PREPARED FROM RICE HUSK

Author:

Simanjuntak Wasinton,Sembiring Simon,Sebayang Kerista

Abstract

The objective of this study was to evaluate the effect of pyrolysis temperatures on composition and electrical conductivity of carbosil produced from rice husk, by conducting pyrolysis experiments at three different temperatures of 200; 400; and 700 °C. The structure of the samples was characterized using Fourier Transform Infrared (FTIR) Spectroscopy and X-Ray Diffraction (XRD). The microstructure and elemental composition were characterized using Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS), and the electrical conductivity was measured using four probe method. The FTIR analyses revealed the existence of Si-O-Si and Si-OH functional groups, but no functional groups associated with carbon, confirming the formation of carbosil. This formation of carbosil is also supported by the results of EDS analyses which show the presence of only three elements of C, O, and Si, respectively. The XRD results indicate that the carbosils are amorphous, suggesting that no transformation of carbon and silica into crystalline phase to the limit of the temperatures applied. The carbosil formation decreased with increasing of pyrolysis temperature. The microstructure of the carbosils indicates that the higher the temperature, the smaller the grain size of the samples. The values of electrical conductivity of the samples are in the range of 1.13 x 10-3 to 6.81 x 10-3/(Ω.m) with the application of 10 tones compression pressure, but the conductivities of the sample prepared at 200 °C were found to increase with increased compression pressure to six fold from 6.81 x 10-3 to 41.94 x 10-3/(Ω.m) by increasing compression pressure to 80 tones. Based on these conductivity values, the samples are considered as semiconductor, suggesting the potential use of the carbosil in semiconductor devices.

Publisher

Universitas Gadjah Mada

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3