Design of New Quinazoline Derivative as EGFR (Epidermal Growth Factor Receptor) Inhibitor through Molecular Docking and Dynamics Simulation

Author:

Rasyid HerlinaORCID,Purwono Bambang,Pranowo Harno Dwi

Abstract

Erlotinib, Afatinib, and WZ4002 are quinazoline derivative compounds and classified as first, second, and third-generation EGFR inhibitor. All inhibitors have been given directly to cancer patients for many years but find some resistance. These three compounds are candidates as the lead compound in designing a new inhibitor. This work aims to design a new potential quinazoline derivative as an EGFR inhibitor focused on the molecular docking result of the lead compound. The research method was started in building a pharmacophore model of the lead compound then used to design a new potential inhibitor by employing the AutoDock 4.2 program. Molecular dynamics simulation evaluates the interaction of all complexes using the Amber15 program. There are three new potential compounds (A1, B1, and C1) whose hydrogen bond interaction in the main catalytic area (Met769 residue). The Molecular Mechanics Generalized Born Surface Area (MM-GBSA) binding energy calculation shows that B1 and C1 compounds have lower binding energies than erlotinib as a positive control, which indicates that B1 and C1 are potential as EGFR inhibitor.

Publisher

Universitas Gadjah Mada

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3