Author:
Mufakhir Fika Rofiek,Khotimah Chusnul,Oediyani Soesaptri,Astuti Widi,Sumardi Slamet,Prasetia Hendra,Arham La Ode,Hakim Hafid Zul,Petrus Himawan Tri Bayu Murti,Poernomo Venny
Abstract
This study uses electrocoagulation to investigate reducing heavy metal content in wastewater from discharging spent batteries. ICP-OES analysis shows that heavy metals exceed the environmental water standard. The electrocoagulation procedure was conducted within a reactor with a 500 mL volume and a rectifier with a 5 A current capacity. Three types of electrode material combinations were used: iron (Fe) and aluminium (Al) as well as Fe-Fe, Al-Al, and Fe-Al pairs with 1 cm in the distance by parallel monopolar cells. Alternating current was used with 30, 40, and 50 A/m2 current density. The best result shown in the Fe-Al electrode pair combination system at 40 A/m2 for 30 min contact time and removal efficiencies for Co, Cd, Ni, Zn, and As is 98.76, 90.73, 99.32, 97.93, and 97.78%, respectively, while for Hg it is 31.84%, even though only Cd is above the standard limit. The heavy metal bearing was confirmed using SEM-EDS in the floc and the precipitate residue. The dissolved electrode materials and electrical energy consumed are 0.32 g and 0.109 kWh/m3, respectively. This method can be a good alternative for treating wastewater compared to direct current electrocoagulation, where the electrode and energy will be less consumed.