Performance of a Hybrid Catalyst from Amine Groups and Nickel Nanoparticles Immobilized on Lapindo Mud in Selective Production of Bio-hydrocarbons

Author:

Trisunaryanti Wega,Azizah Salma Nur,Fatmawati Dyah Ayu,Triyono Triyono,Ningrum Novia Cahya

Abstract

In the present work, optimum conditions for hydrocracking of waste palm cooking oil (WPCO) over a Ni-NH2/Lapindo mud catalyst were studied to obtain a high quantity and quality of biofuel. The utilized catalyst support material was Lapindo mud (LM) from Sidoarjo, Indonesia, which was only given physical treatment (i.e., washing, drying, grinding, and calcining). Ni/LM was prepared via wet impregnation in three different Ni weight loadings: 1, 5, and 10 wt.%, which were denoted as Ni(A)/LM, Ni(B)/LM, and Ni(C)/LM, respectively. As a result, the hydrocracking test of WPCO under the temperature of 470 °C and a feed/catalyst weight ratio of 50 showed that the Ni(A)/LM catalyst produced the highest liquid product reaching 46.65 wt.% among the other Ni-based catalysts. The liquid product can be increased drastically to 63.93 wt.% under a more optimum temperature at 550 °C. Functionalization of Ni(A)/LM as the best catalyst was carried out by grafting method with NH2 groups from 3-APTMS, resulting in Ni(A)-NH2/LM. This modification increased the liquid product to 68.17 wt.% under hydrocracking conditions using a weight ratio of 75. Moreover, the reusability of Ni(A)-NH2/LM was found to be effective for three hydrocracking runs, constantly yielding an average biofuel of 80 wt.%.

Publisher

Universitas Gadjah Mada

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3