A Review of Feature Selection and Classification Approaches for Heart Disease Prediction

Author:

Firdaus Fathania Firwan,Nugroho Hanung Adi,Soesanti Indah

Abstract

Cardiovascular disease has been the number one illness to cause death in the world for years. As information technology develops, many researchers have conducted studies on a computer-assisted diagnosis for heart disease. Predicting heart disease using a computer-assisted system can reduce time and costs. Feature selection can be used to choose the most relevant variables for heart disease. It includes filter, wrapper, embedded, and hybrid. The filter method excels in computation speed. The wrapper and embedded methods consider feature dependencies and interact with classifiers. The hybrid method takes advantage of several methods. Classification is a data mining technique to predict heart disease. It includes traditional machine learning, ensemble learning, hybrid, and deep learning. Traditional machine learning uses a specific algorithm. The ensemble learning combines the predictions of multiple classifiers to improve the performance of a single classifier. The hybrid approach combines some techniques and takes advantage of each method. Deep learning does not require a predetermined feature engineering. This research provides an overview of feature selection and classification methods for the prediction of heart disease in the last ten years. Thus, it can be used as a reference in choosing a method for heart disease prediction for future research.

Publisher

Universitas Gadjah Mada

Subject

Industrial and Manufacturing Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cardiovascular Disease Prediction Using Langchain;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

2. Exploring Important Factors in Predicting Heart Disease Based on Ensemble- Extra Feature Selection Approach;Baghdad Science Journal;2024-02-25

3. Cardiovascular Disease Prediction using Patient History and Real Time Monitoring;2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT);2024-01-04

4. KNN And Naïve Bayes Algorithms for Improving Prediction of Indonesian Film Ratings using Feature Selection Techniques;2023 4th International Conference on Big Data Analytics and Practices (IBDAP);2023-08-25

5. Pain Classification Using Statistical Feature Extraction Using Machine Learning Approach: A Pilot Study;2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE);2023-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3