Image Analysis for MRI-Based Brain Tumor Classification Using Deep Learning

Author:

Qodri Krisna Nuresa,Soesanti Indah,Nugroho Hanung Adi

Abstract

Tumors are cells that grow abnormally and uncontrollably, whereas brain tumors are abnormally growing cells growing in or near the brain. It is estimated that 23,890 adults (13,590 males and 10,300 females) in the United States and 3,540 children under the age of 15 would be diagnosed with a brain tumor. Meanwhile, there are over 250 cases in Indonesia of patients afflicted with brain tumors, both adults and infants. The doctor or medical personnel usually conducted a radiological test that commonly performed using magnetic resonance image (MRI) to identify the brain tumor. From several studies, each researcher claims that the results of their proposed method can detect brain tumors with high accuracy; however, there are still flaws in their methods. This paper will discuss the classification of MRI-based brain tumors using deep learning and transfer learning. Transfer learning allows for various domains, functions, and distributions used in training and research. This research used a public dataset. The dataset comprises 253 images, divided into 98 tumor-free brain images and 155 tumor images. Residual Network (ResNet), Neural Architecture Search Network (NASNet), Xception, DenseNet, and Visual Geometry Group (VGG) are the techniques that will use in this paper. The results got to show that the ResNet50 model gets 96% for the accuracy, and VGG16 gets 96% for the accuracy. The results obtained indicate that transfer learning can handle medical images.

Publisher

Universitas Gadjah Mada

Subject

Industrial and Manufacturing Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing brain tumor classification with hybrid CNN architecture: Balancing accuracy and efficiency through oneAPI optimization;Informatics in Medicine Unlocked;2024

2. Classification Insights into Brain MRI Classification: Techniques, Interpretability, and Future;International Journal of Advanced Research in Science, Communication and Technology;2023-12-12

3. Brain Tumor Detection and Localization from MRI Images Using Deep Learning Methods;2023 International Conference on Information Management and Technology (ICIMTech);2023-08-24

4. An Early Diagnosis of Brain Tumor Using Fused Transfer Learning;2023 International Conference on Business Analytics for Technology and Security (ICBATS);2023-03-07

5. Brain Tumor Detection using Machine Learning and Convolutional Neural Network;2022 International Conference on Artificial Intelligence and Data Engineering (AIDE);2022-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3