Unsteady-State Distributions of Fluid Compositions in Two-Phase Oil Reservoirs Undergoing Gas Injection

Author:

McFarlane Robert C.1,Mueller T.D.1,Miller F.G.1

Affiliation:

1. Stanford U., Stanford, Calif.

Abstract

Abstract During the process of gas storage in pressure-depleted oil reservoirs, it has been observed that in some instances additional liquid oil is recovered and that the composition of the storage gas is materially altered. A mathematical study was made of the dynamic behavior of such a depleted oil reservoir undergoing gas injection. The important variable considered in this study, not included in previously published work, was that of compositional effects on the phase behavior of two-phase flow. Pressure, saturation and component composition profiles were developed for a linear, horizontal and homogeneous porous medium containing oil and gas but undergoing dry gas injection. Special new techniques were developed to overcome the problems of numerical smoothing which arise in the solution of the equations representing such systems. The method of solution includes the development of partial differential equations describing the behavior of the system, representing these equations by finite difference approximations, making certain simplifying assumptions and, finally, applying methods of numerical analysis with the aid of a high-speed digital computer. In an example calculation, results using the mathematical model are compared with field observations made on a gas storage project in Clay County, Tex. This field project involved a depleted oil reservoir used' for gas storage and gas cycling purposes. As a result of these processes, the reservoir yielded substantial amounts of secondary oil, both in the form of stock tank oil and as vaporized products in the produced gas. The methods derived in this study may be applied to a variety of oil reservoir problems which are dependent on compositional effects. INTRODUCTION In recent years the number of oil reservoirs being used for gas storage purposes has increased greatly, and there has been at least one published account of additional oil recovery resulting from gas cycling a depleted oil reservoir after repressuring with dry gas for storage purposes. Additional oil recovery from oil reservoirs resulting from gas storage operations could become an important secondary recovery process. This is especially true since the use of natural gas in large metropolitan areas continues to increase and more gas storage volume near these areas is needed. These facts provided the motivation for the work reported here. This paper reports on a study of the inter-relations of composition, saturation and pressure changes which occur when hydrocarbon gas is injected into an oil reservoir system. From an understanding of the process, prediction methods may be developed for use in forecasting the secondary recovery products from gas storage operations in oil reservoirs and, consequently, .the economics of such projects can be developed.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational Mass Transfer Method for Chemical Process Simulation;Chinese Journal of Chemical Engineering;2008-01

2. Heterogeneous flows of multi-component mixtures in porous media—review;International Journal of Multiphase Flow;1978-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3