Abstract
Summary
Oil/water interfacial tension (IFT) is an important parameter in petroleum engineering, especially for enhanced-oil-recovery (EOR) techniques. Surfactant and low-salinity EOR target IFT reduction to improve oil recovery. IFT values can be determined by empirical correlation, but widely used thermodynamic-based correlations do not account for the surface-activities characteristic of the polar/nonpolar interactions caused by naturally existing components in the crude oil. In addition, most crude oils included in these correlations come from conventional reservoirs, which are often dissimilar to the low-asphaltene crude oils produced from shale reservoirs. This study presents a novel oil-composition-based IFT correlation that can be applied to shale-crude-oil samples. The correlation is dependent on the saturates/aromatics/resins/asphaltenes (SARA) analysis of the oil samples. We show that the crude oil produced from most unconventional reservoirs contains little to no asphaltic material. In addition, a more thorough investigation of the effect of oil components, salinity, temperature, and their interactions on the oil/water IFT is provided and explained using the mutual polarity/solubility concept. Fifteen crude-oil samples from prominent US shale plays (i.e., Eagle Ford, Middle Bakken, and Wolfcamp) are included in this study. IFT was measured in systems with salinity from 0 to 24% and temperatures up to 195°F.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献