An Analytical Model Coupled With Data Analytics to Estimate PDC Bit Wear

Author:

Liu Z..1,Marland C..1,Li D..1,Samuel R..1

Affiliation:

1. Halliburton

Abstract

Abstract The increasing complexities of wellbore geometry imply an increasing potential of damage resulting from downhole bit wear. Although the locations of critical bit wear can be difficult to predict, the quantification of the actual bit teeth/cutter wear is important to achieve reduced cost per foot and predictable bit failure. There is no acceptable universal mathematical model that describes bit wear accurately because of the complex nature of downhole conditions. Usually, either analytical models or real-time data analytics are used separately to estimate and predict bit wear. Combining both methods and using them simultaneously is an efficient way to address this limitation. This paper presents a new simple analytical bit wear model coupled with data analytics using real-time gamma ray data to suppress the uncertainties of the interacting formation properties and other intervening variables. The fractional bit wear of polycrystalline diamond compact (PDC) bit cutters is obtained from the geometric correlation between height loss and the cutter volume loss. The volume loss of cutters is assumed to be proportional to weight on bit (WOB), cutter sliding distance, rock strength, and rock quartz content. The paper presents a field example to predict and estimate the bit wear using actual data. Gamma ray and rate of penetration (ROP) data of the initial drilling section are used to train the model to quantify the influence of formation strength interaction with the analytical model. Then estimation of ROP using the new bit wear model was carried out using actual field drilling parameters. The calculated ROP profile closely matched with the actual data within reasonable accuracy of less than 5%. Specific procedures are proposed for effective prediction of ROP and bit life.

Publisher

SPE

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3