Microbial Enhanced Oil Recovery (MEOR): mechanism, rate of biodegradation of hydrocarbon, field applications and challenges

Author:

Okoro Franklin1,Odukwe Patricia2,Frank-Okoro Mary3

Affiliation:

1. CLEANSCRIPT GROUP

2. UNIVERSITY OF ABERDEEN

3. ECOLAB

Abstract

Abstract This paper investigated the biodegradation of selected hydrocarbons (e.g., alkanes, such as decane, and others) by open mixed microbial cultures. Laboratory experiments were conducted with the aim to investigate the rate of biodegradation of dodecane using glass bioreactors over an incubation period of 31days. In the study, dodecane represented the hydrocarbon used, and the microbial activity was subjected to aerobic conditions. Mineral water was used to stimulate the microbial growth. The results obtained indicated that an increase in the rate of biodegradation can be achieved, thus resulting in an increase in the oil recovery efficiency. It can be inferred that MEOR is a "high-risk, high reward" process, depending on whether the microorganisms can produce oil recovery-enhancing chemicals by utilizing the residual oil within the reservoir as a carbon source. The high risk in this context refers to the severe constraints that the microbial system must satisfy in order to utilize an in-situ carbon source. The rewards however are that the logistical cost and difficulty in implementing the process is similar to those of implementing a waterflood.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3