Coiled-Tubing Wiper Trip Hole Cleaning in Highly Deviated Wellbores

Author:

Walker S.1,Li J.1

Affiliation:

1. BJ Services Company

Abstract

Abstract Wiper trips are the current field practice to clean the hole for coiled tubing drilling or sand clean out operations. A wiper trip can be defined as the movement of the end of the coiled tubing in and out of the hole, a certain distance. In order to clean the solids out of the wellbore, a proper wiper trip speed should be selected based on the operational conditions. There is no previously published information related to the selection of the wiper trip speed. In this study, numerous laboratory tests were conducted to investigate wiper trip hole cleaning and how the hole cleaning efficiency is influenced by solids transport parameters such as;Nozzle Type,particle size,fluid type,deviation angle,multi-phase flow effect. The results indicate the following:Compared with stationary circulation hole cleaning, the use of the wiper trip produces a more efficient clean out.For a given operational condition, there is an optimum wiper trip speed at which the solids can be completely removed.Nozzles with a correctly selected jet arrangement yield a higher optimum wiper trip speed and provide a more efficient clean out.The hole cleaning efficiency is dependent on the deviation angle, fluid type, particle size, and nozzle type. Correlation's have been developed that predict the optimum wiper trip speed and the quantity of solids removed from and remaining in the wellbore for given operating conditions. The wiper trip provides an advantage for hole cleaning and can be modeled to provide efficient operations. Introduction Solids transport and wellbore cleanouts can be very effective using Coiled Tubing techniques, if one has the knowledge and understanding of how the various parameters interact with one another. Poor transport can have a negative effect on the wellbore whether it is for coiled tubing drilling or cleanouts, which may cause sand bridging and as a result getting the coiled tubing stuck. Coiled Tubing can be a very cost-effective technology when the overall process is well designed and executed. The highly deviated/horizontal well has placed a premium on having a reliable body of knowledge about solids transport in single and multi-phase conditions. In our previous studies1–2, a comprehensive experimental test of solids’ transport for the stationary circulation was conducted, which included the effect of liquid/gas volume flow rate ratio, ROP, deviation angle, circulation fluid properties, particle size, fluid rheology, and pipe eccentricity on solids transport. Based on the test results the data was analyzed, correlation's were developed, and a computer program was developed. In this study, the wiper trip hole cleaning effectiveness was investigated with various solids transport parameters such as, deviation angle, fluid type, particle size, and nozzle type. Based on these test results, an existing computer program was modified and adjusted to include these additional parameters and their effect on wiper trip hole cleaning. Experimental Setup The flow loop shown in Figure 1 was used for this project. It was developed in a previous study1–2. The flow loop has been designed to simulate a wellbore in full scale. This flow loop consists of a 20ft long transparent lexan pipe with a 5-inch inner diameter to simulate the open hole and a 1–1/2" inch steel inner pipe to simulate coiled tubing. The flowloop was modified and hydraulic rams were installed to enable movement of the tubing (see figure 2). The inner pipe can be positioned and moved in and out of the lexan to simulate a wiper trip. The loop is mounted on a rigid guide rail and can be inclined at any angle in the range of 0°–90° from vertical. When the coiled tubing is in the test section, circulating the sand into the test section and build an initial sand bed with an uniform height cross the whole test section. Then pull the coil out of the test section with a preset speed.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coiled Tubing Utilized to Aid Complex Well Recompletion;Day 2 Wed, March 22, 2023;2023-03-14

2. Introduction;Fundamentals of Horizontal Wellbore Cleanout;2022

3. Coiled tubing software models and field applications – A review;Journal of Petroleum Science and Engineering;2019-11

4. Sand Cleanouts With Coiled Tubing: Choice of Process, Tools and Fluids;Journal of Canadian Petroleum Technology;2010-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3