Reservoir Production Management With Bayesian Optimization: Achieving Robust Results in a Fraction of the Time

Author:

Kor Peyman1ORCID,Hong Aojie2ORCID,Bratvold Reidar2ORCID

Affiliation:

1. Energy Resources Department, University of Stavanger (Corresponding author)

2. Energy Resources Department, University of Stavanger

Abstract

SummaryIn well control (production) optimization, the computational cost of conducting a full-physics flow simulation on a 3D, rich grid-based model poses a significant challenge. This challenge is exacerbated in a robust optimization (RO) setting, where flow simulation must be repeated for numerous geological realizations, rendering RO impractical for many field-scale cases. In this paper, we introduce and discuss a new optimization workflow that addresses this issue by providing computational efficiency, i.e., achieving a near-global optimum of the predefined objective function with minimal forward model (flow-simulation) evaluations. In this workflow, referred to as “Bayesian optimization (BO),” the objective function for samples of decision (control) variables is first computed using a proper design experiment. Then, given the samples, a Gaussian process regression (GPR) is trained to mimic the surface of the objective function as a surrogate model. While balancing the dilemma to select the next control variable between high mean, low uncertainty (exploitation) and low mean, high uncertainty (exploration), a new control variable is selected, and flow simulation is run for this new point. Later, the GPR is updated, given the output of the flow simulation. This process continues sequentially until the termination criteria are satisfied. To validate the workflow and obtain a better insight into the detailed steps, we first optimized a 1D problem. The workflow is then implemented for a 3D synthetic reservoir model to perform RO in a realistic field scenario (8-dimensional and 45-dimensional optimization problems). The workflow is compared with two other commonly used gradient-free algorithms in the literature: particle swarm optimization (PSO) and genetic algorithm (GA). The main contributions are (1) developing a new optimization workflow to address the computational cost of flow simulation in RO, (2) demonstrating the effectiveness of the workflow on a 3D grid-based model, (3) investigating the robustness of the workflow against randomness in initiation samples and discussing the results, and (4) comparing the workflow with other optimization algorithms, showing that it achieves same near-optimal results while requiring only a fraction of the computational time.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Reference44 articles.

1. Evolutionary Optimization of Smart-Wells Control under Technical Uncertainties;Almeida,2007

2. Production Optimization Using Derivative Free Methods Applied to Brugge Field Case;Asadollahi;J Pet Sci Eng,2014

3. Bendtsen, C . 2022. Pso: Particle Swarm Optimization R Package version 1.0.4. https://CRAN.R-project.org/package=pso.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3