Experimental Study on Forced Imbibition and Wettability Alteration of Active Carbonated Water in Low-Permeability Sandstone Reservoir

Author:

Li Songyan1ORCID,Du Kexin2ORCID,Wei Yaohui2ORCID,Li Minghe2ORCID,Wang Zhoujie2ORCID

Affiliation:

1. Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education; School of Petroleum Engineering, China University of Petroleum (East China) (Corresponding author)

2. School of Petroleum Engineering, China University of Petroleum (East China)

Abstract

Summary Imbibition is one of the main mechanisms for fluid transport in porous media. A combination of carbonated water and active water [active-carbonated water (ACW)] has great prospects in enhanced oil recovery (EOR) and carbon reduction processes. To date, the law of hydrocarbon recovery induced by ACW imbibition is not clear. In this paper, the optimal surfactant concentration was first selected through a spontaneous imbibition experiment, and on this basis, CO2 was dissolved to form ACW. The imbibition effects of formation water (FW), surfactant solution DX-1, and ACW under different pressures were compared. The changes in rock wettability in the three imbibition solutions during imbibition were studied by measuring the contact angle. The effect of fracture on ACW imbibition was studied. Finally, the improved NB−1 was calculated to elucidate the mechanism of forced imbibition for EOR. The results show that 0.1% DX-1 produces the optimal imbibition effect. Pressure is positively correlated with imbibition recovery. ACW can significantly improve the imbibition effect due to its wettability reversal ability being better than those of FW and DX-1. CO2 in ACW can be trapped in the formation through diffusion into small rock pores. The contact angles of the three imbibition solutions decrease with increasing pressure. The contact angle between the rock and oil droplet in the ACW is as low as 38.13°. In addition, the fracture increases the contact area between the matrix and the fluid, thereby improving the imbibition effect. The alteration of NB−1 indicates that FW imbibition is gravity-driven cocurrent imbibition. DX-1 and ACW imbibitions are countercurrent imbibitions driven by capillary force and gravity. The above results demonstrate the feasibility of ACW in low-permeability reservoir development and carbon reduction.

Publisher

Society of Petroleum Engineers (SPE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3