Estimating Leak-Off Characteristics Due to Hydraulic Fracture and Natural Fracture Interaction Utilizing XFEM-Based 3D Hydraulic Fracture Model

Author:

Leem Junghun1,Musa Ikhwanul Hafizi1,Tan Chee Phuat1,Che Yusoff M Fakharuddin1,Zain Zahidah Md1,Kear James2,Kasperczyk Dane2,Chen Zuorong2,Salimzadeh Saeed2

Affiliation:

1. PETRONAS

2. CSIRO

Abstract

Abstract Leak-off characteristics during hydraulic fracturing operation are difficult to determine but yet critical in developing conventional and unconventional reservoirs with natural fractures and other weak structural planes (e.g. micro-faults, weak beddings). When hydraulic fractures interact with natural fractures, they will either be arrested or transect the natural fractures depend on the leak-off characteristic of the natural fractures. The effective leak-off characteristic in a naturally fractured reservoir is an essential input for hydraulic fracturing simulation and consequent completion design as well as reservoir simulation (e.g., dual porosity and dual permeability) and consequent production optimization. A novel method of estimating the effective leak-off characteristic in a naturally fractured reservoir is developed directly from hydraulic fracturing diagnostic tests such as minifrac and DFIT utilizing eXtended Finite Element Method (XFEM)-based 3D hydraulic fracturing model. Complex behaviors of hydraulic fractures interacting with natural fractures are simulated in the XFEM-based hydraulic fracturing model and history-matched with minifrac/DFIT data (i.e., treating pressure), in order to estimate effective leak-off characteristics of naturally fractured reservoirs.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical model of 2D leakoff in waterflood-induced fractures;Journal of Rock Mechanics and Geotechnical Engineering;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3