The Viscosity of Natural Gases

Author:

Lee Anthony L.1,Gonzalez Mario H.1,Eakin Bertram E.1

Affiliation:

1. Institute Of Gas Technology

Abstract

Abstract Experimental viscosity and density data of four natural gases are presented for temperatures from 100 to 340 F and pressures from 100 to 8,000 psia. A correlation is discussed and results reported. Introduction This investigation is one of several efforts by the authors to provide viscosity data for pure hydrocarbons and mixtures. Results of some pure hydrocarbons and their mixtures have been presented. Several predictive methods and correlations have also been reported. This paper presents the experimental viscosity and density data of four natural gases and confirms a correlation in a previous study. APPARATUS The viscometer was described previously. A bank of stainless steel pycnometers was included to determine density in conjunction with the viscosity measurements (Fig. 1). DATA AND MATERIALS The natural gases were furnished by the Atlantic Richfield Co. (Samples 1 and 2), the Continental Oil Co. (Sample 3) and the Pan American Petroleum Corp. (Sample 4). Table 1 shows the composition of these gases obtained by mass spectrometer analysis. The pure component viscosity data used in the correlation have been published. Experimental and calculated viscosity data for the natural gases are presented in Tables 2 through 5. CORRELATION Starling and Ellington have reported several semi-empirical expressions based to a certain extent on the theory of viscosity advanced by Born and Green. The final expression presented by Starling and Ellington is: (micropoise)= o exp[X(T) pY(T)]....... (1) Eq.1 was modified by Lee et al. to represent mixture and pure component data simultaneously. This equation has the form: ..........(2) where K= ..........(3) X= ..........(4) Y= ..........(5) Over the pressure and temperature range studied in this investigation, this equation represents the data on methane, ethane, propane, n-butane and four methane-n-butane mixtures with a standard deviation* of 1.89 per cent. Density data by Sage and Lacey were used to fit the equations. Eq. 2 gives reliable values of the viscosity of light hydrocarbons without prior knowledge of experimental viscosity values, but accurate density data must be available. Eq. 2 was used to predict viscosity values for the natural gases studied in this paper. The particular set of parameters contained in Eqs. 3 through 5 gave values that reproduced experimental data within 5 per cent. Needless to say, in using Eq. 2 better density values will give better viscosity results. However, those engineers who do not have accurate density values at hand or the time, or such facilities as a library. computer, etc. readily available, may feel uneasy in using Eq. 2. Therefore, the authors sought the easiest but by no means best density prediction method, which was reported by Kay 30 years ago. A set of density values, which were calculated based on Kay's method, and a generalized compressibility factor chart were used to fit Eq. 2. JPT P. 997ˆ

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3