Field Study of Completion Fluids To Enhance Gas Production in the Barnett Shale

Author:

Penny Glenn S.1,Dobkins Terrell Allen2,Pursley John Thomas1

Affiliation:

1. CESI Chemical

2. Antero Resources Corp.

Abstract

Abstract In this work field data and lab data are presented for various fluids pumped in the Barnett Shale. Recent fracture treatments have been light sand fracs in slick water consisting of water and friction reducer, with and without surfactants. Commonly used surfactants as well as a microemulsion system (ME) are evaluated. Lab data is presented that illustrates how the microemulsion accelerates the cleanup of injected fluids in tight gas cores. The microemulsion additive results in lower pressures to displace injected fluids from low permeability core samples and proppant packs. The relative perm to gas is increased substantially as the water saturation is decreased. The enhanced relative permeability mechanism is the alteration of the rock-fluid interfacial tension or contact angle. It is demonstrated that this alteration effectively lowers the capillary pressure and capillary end effect associated with fractures in low perm reservoirs by as much as 50%, thus mitigating phase trapping and therefore permitting an increased flow area to the fracture, hence longer effective frac lengths. Over 200 wells have been treated and analyzed in the Barnett Shale for this study. Several side by side comparisons of treatment variations are possible. The addition of the microemulsion to fracturing treatments has resulted in more than 50% increases in load recoveries and 30–40% increases in gas production. Pressure analysis of fractured wells shows that the damage factor is reduced by a factor of 2 in the Barnett shale with the inclusion of ME. This is a result of a combination of reduced depth of invasion, a higher relative perm in the invaded zone and/or longer effective frac lengths. Introduction The initial Barnett shale wells in the mid nineties were completed with massive hydraulic fracturing treatments with 1 million pounds of proppant carried in crosslinked gelled fluids. In an effort to reduce stimulation costs without reducing production, light sand fracturing emerged as the method of choice. The success has been attributed to the ability of the slick water treatments to contact a larger surface area of the reservoir with minimized fracturing fluid damage at the fracture face and within the proppant pack. Even in these smaller fracturing treatments up to 1.2 million gallons of water are pumped most often with friction reducer at 0.25 - 0.5 gal/1000 gal (gpt). Treatments examined in this work varied from 23,000 bbl and 140,000 lb of sand run at 0.25 to 1.0 ppg at an average rate of 65 bpm. From fracture diagnostic work it is apparent that the fluid travels down multiple fractures running southwest to northeast. This gives the opportunity for fluid invasion of the secondary permeability surrounding the fracture of some 250 ft on each side of the fracture fairway and been microseismically mapped to extend over 2000 ft from the wellbore. Propped fracture half-lengths are estimated at 1000 ft. with damage surrounding each frac. Figure 1 shows the extensive fracture system that is proposed from microseismic. Comparison of post frac flow back volumes to frac fluid load volumes shows that 60 to 90% of the injected fluid stays in the reservoir. The insert in Figure 1 illustrates fluid that is trapped near one of the fractures by high capillary pressures and capillary end effects.

Publisher

SPE

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3