Advanced Modeling of Interwell-Fracturing Interference: An Eagle Ford Shale-Oil Study

Author:

Marongiu-Porcu Matteo1,Lee Donald1,Shan Dan1,Morales Adrian1

Affiliation:

1. Schlumberger

Abstract

Summary To investigate interwell interference in shale plays, a state-of-the-art modeling workflow was applied to a synthetic case on the basis of known Eagle Ford shale geophysics and completion/development practices. A multidisciplinary approach was successfully rationalized and implemented to capture 3D formation properties, hydraulic-fracture propagation and interaction with a discrete-fracture network (DFN), reservoir production/depletion, and evolution of magnitude and azimuth of in-situ stresses by use of a 3D finite-element model (FEM). The integrated workflow begins with a geocellular model constructed by use of 3D seismic data, publicly available stratigraphic correlations from offset-vertical-pilot wells, and openhole-well-log data. The 3D seismic data were also used to characterize the spatial variability of natural-fracture intensity and orientation to build the DFN model. A recently developed complex fracture model was used to simulate the hydraulic-fracture network created with typical Eagle Ford pumping schedules. The initial production/depletion of the primary well was simulated by use of a state-of-the-art unstructured grid reservoir simulator and known Eagle Ford shale pressure/volume/temperature (PVT) data, relative permeability curves, and pressure-dependent fracture conductivity. The simulated 3D reservoir pressure field was then imported into a geomechanical FEM to determine the spatial/temporal evolution of magnitude and azimuth of the in-situ stresses. Importing the simulated pressure field into the geomechanical model proved to be a critical step that revealed a significant coupling between the simulated depletion caused by the primary well and the morphology of the simulated fractures within the adjacent infill well. The modeling workflow can be used to assess the effect of interwell interferences that may occur in a shale field development, such as fracture hits on adjacent wells, sudden productivity losses, and dramatic pressure/rate declines. The workflow addresses the complex challenges in field-scale development of shale prospects, including infilling and refracturing programs. The fundamental importance of this work is the ability to model pressure depletion and associated stress properties with respect to time (time between production of the primary well and fracturing of the infill well). The complex interaction between stress reduction, stress anisotropy, and stress reorientation with the DFN will determine whether newly created fractures propagate toward the parent well or deflect away. The technique should be implemented in general development strategies, including the optimization of infilling and refracturing programs, child well lateral spacing, and control of fracture propagation to minimize undesired fracture hits or other interferences.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3