The Multiscale Finite-Volume Method on Stratigraphic Grids

Author:

Møyner Olav1,Lie Knut-Andreas1

Affiliation:

1. SINTEF ICT

Abstract

Summary Finding a pressure solution for large and highly detailed reservoir models with fine-scale heterogeneities modeled on a meter scale is computationally demanding. One way of making such simulations less compute-intensive is to use multiscale methods that solve coarsened flow problems by use of a set of reusable basis functions to capture flow effects induced by local geological variations. One such method, the multiscale finite-volume (MsFV) method, is well-studied for 2D Cartesian grids but has not been implemented for stratigraphic and unstructured grids with faults in three dimensions. We present an open-source implementation of the MsFV method in three dimensions along with a coarse partitioning algorithm that can handle stratigraphic grids with faults and wells. The resulting solver is an alternative to traditional upscaling methods, but can also be used for accelerating fine-scale simulations. To achieve better precision, the implementation can use the MsFV method as a preconditioner for Arnoldi iterations using the generalized minimal residual (GMRES) method or as a preconditioner in combination with a standard inexpensive smoother. We conduct a series of numerical experiments in which approximate solutions computed by the new MsFV solver are compared with fine-scale solutions computed by a standard two-point scheme for grids with realistic permeabilities and geometries. On the one hand, the results show that the MsFV method can produce accurate approximations for geological models with pinchouts, faults, and nonneighboring connections, but on the other hand, they also show that the method can fail quite spectacularly for highly heterogeneous and anisotropic systems in a way that cannot efficiently be mitigated by iterative approaches. Thus, the MsFV method is, in our opinion, not yet sufficiently robust to be applied as a black-box solver for models with industry-standard complexity. However, extending the method to realistic grids is an important step on the way toward a fast and accurate multiscale solution of large-scale reservoir models. In particular, our open-source implementation provides an efficient framework suitable for further experimentation with partitioning algorithms and MsFV variants.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3