Stringer Detection and Drilling System Significantly Reduces the Invisible Lost Time (ILT) Caused by Reaming

Author:

Hohl Andreas1,Houghton Glen1,MacFarlane Danial1

Affiliation:

1. Baker Hughes

Abstract

AbstractDrilling hard stringers that are erratically distributed in an underlying rather soft formation is challenging from different perspectives. An unforeseen change of the drilled formation from soft to hard and dense rock can cause impact damage to the bit, deflect the bottom-hole assembly (BHA), result in high bending loads, increase vibration, and cause wear/tear on BHA components. If not properly managed, this leads to non-productive time (NPT) and increased maintenance costs. Further, a deflection caused by a stringer away from the planned well path that is detected late results in high local doglegs (HLD) and requires time-consuming correction through reaming with invisible lost time (ILT).Recently, a stringer detection method based on vibrations, namely high-frequency torsional oscillations (HFTO), has been presented. A case study with 21 sections in the North Sea based on this solution is shown that demonstrates a reduction in ILT by 80%.The system is based on a timely and reliable detection of stringers, an optimized mud pulse telemetry scheme, and an automated advisory system. The downhole algorithm embedded in a measurement while drilling tool is consistently interpreting HFTO based on tangential acceleration and dynamic torsional torque measurement. By defining thresholds for the amplitude and the localization with respect to frequency content of HFTO, the algorithm results are translated into a binary value with 1 – stringer currently drilled or 0 - no stringer is drilled. The low bandwidth consuming 1-bit value and downhole measured bending moment are sent in 10 to 15 second intervals to the surface by mud pulse telemetry. Once the stringer is detected, the bending moment data is closely monitored to react correctly and efficiently to a stringer in different scenarios.This solution is discussed in a case study in Norway covering 21 sections with and without the system deployed. The offshore application is challenged by frequently occurring stringer layers and nodules of different geometry. Based on the stringer content, the reaming time has been typically high in this application. The system, however, enabled a timely detection of the stringers and an optimal stringer drilling enabled by the frequently sent bending moment information. Therefore, stringer drilling was done without having to pull off-bottom frequently and ream the transition area between soft and hard formation thereby saving time and reducing wear on the BHA and drill pipe, ultimately ending up with a smoother/straighter wellbore.By using the system, a faster reaction to any stringer and the use of appropriate parameters to avoid costly HLDs are achieved. The case study demonstrates a significant and consistent improvement in ILT. The reaming hours per 1000 m as a benchmark have been reduced from 2-5 hours without to 0.3-0.6 hours with the system resulting in an average saving of 12 hours per reservoir section.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3