Reducing Reservoir Uncertainty During Appraisal and Development - Novel Applications of a new Wireless Reservoir Monitoring Technology in Santos Basin Pre-Salt

Author:

Champion B. P.1,Puntel E. A.2

Affiliation:

1. Expro

2. Petrobras

Abstract

Abstract Uncertainties in reservoir connectivity and compartmentalization risk are important considerations when thinking about any new field appraisal or development options. Having a better understanding of reservoir connectivity provides benefits in determining the appropriate drainage strategy and optimizing the field development plan. By the application of a new wireless reservoir monitoring technology, based on electromagnetic (EM) communications, it is now possible to monitor the reservoir pressure and temperature response during the long term suspension of development or appraisal wells. Accurate reservoir data can now be reliably collected in the period prior to a completion string being run, or a Xmas tree being installed on the well. Petrobras is conducting an active programme of drilling and well testing evaluation in the Pre-Salt Santos Basin area, with the objective of maximizing the collection of reservoir data that can be used to prove the reservoir models. An opportunity was identified to utilize this wireless monitoring technology in some newly drilled development wells that were to be suspended for an extended period of up to 3 years. The primary monitoring objective was to gather dynamic reservoir pressure data that could be used to identify interference effects resulting from production or injection events in the adjacent field area. Any evidence of interference will serve to prove reservoir connectivity with the adjacent well assets. A secondary monitoring objective was to record a long term pressure build-up, beyond the end of a Drill Stem Test (DST), to check for the presence of any reservoir boundaries located far from the wellbore. Case histories are presented for 2 installations of the wireless technology in the Brazilian deepwater pre-salt environment. The first case history presents the installation of a wireless gauge system that successfully transmitted high quality pressure and temperature data to a subsea receiver for a period of 873 days until the receiver's recovery from the seabed. The results show clear evidence of inter-well interference resulting from production in both near and far located wells. With certain producing wells being located at least 12km away from the observation well, this demonstrates that there was excellent reservoir connectivity across the field. The second case history was targeted at monitoring for interference effects resulting from an extended well test being performed on a well located 15km away. At the time of authoring this paper the survey has been on-going for 341 days and whilst there is no evidence of connectivity, the long term pressure build-up monitoring beyond the end of the DST has provided useful data. For both case histories the data collected has proved very useful in reducing uncertainty during the early stages of field development.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3