The Streaming Potential and the Rheology of Foam

Author:

Raza S.H.,Marsden S.S.

Abstract

Abstract An experimental study of the flow of fine-textured, aqueous foams through Pyrex tubes is described. The foams range in quality F (ratio of gas volume to total volume) from 0.70 to 0.96 and behave like pseudoplastic fluids. At lower flow rates they exhibit laminar flow and have apparent viscosities which increase with quality, and which cover a range of 15 cp to 255 poise for tubes of 0.25- to 1.50-mm radius ri. At higher flow rates a plug-like type of flow is developed, the extent of which increases with both and ri. When the same foams flow through either open or packed Pyrex tubes, remarkably high streaming potentials phi E are often generated. These can easily reach 50v if nonionic foaming agents are used, but are at least an order of magnitude less for ionic foaming agents. A linear relationship between phi E and the pressure differential phi p is observed; this usually extrapolates to positive values of phi p at phi E of zero. The slope of the line increases with both F and ri. An equation was derived to describe the streaming potential of non-Newtonian fluids in circular tubes and was used to correlate experimental results. The calculated potential is are of the right order of magnitude. Introduction Foams are both unusual and intriguing in their physical properties, and have been the subject of many scientific studies. However, present knowledge of foams is still fragmentary, specific and often contradictory. Apparent viscosity of foam is the physical property of greatest interest to both rheologists and engineers. Sibree reported that the apparent viscosity decreased with increasing shear rate in a manner similar to some non-Newtonian fluids. Penny and Blackman reported that fire-fighting foams had both a limiting shear stress and a tensile yield stress. There is little doubt that some foams at least behave like non-Newtonian fluids, and have apparent viscosities considerably higher than those of either constituent phase. The high apparent viscosity of foam with its concomitant effect on mobility ratio and sweep efficiency no doubt prompted several attempts by research groups to use foam as a displacing agent in porous media. Based on recent experience, most of these groups probably succeeded in completely blocking fluid flow in the porous media and then abandoned their efforts. Two groups apparently found the successful combination of experimental parameters at about the same time. Others have recently added to our knowledge-of foam flow in porous media and its use as a displacing agent. An experimental problem encountered by Fried was a transient blockage of foam flow in porous media when distilled water was used to prepare the foam-producing solution. Fried surmised that this was due to an electrokinetic effect and he eliminated it by using electrolytes in preparing foaming solutions. He also measured the streaming potential of a number of foams in capillary tubes which he found to be appreciably higher than those obtained when the constituent liquid flowed under comparable conditions. This paper presents results of a more comprehensive study of the streaming potential generated by aqueous foam flowing in both open and packed Pyrex tubes. It also adds to knowledge of the rheology of these foams as deduced from their flow behavior in open tubes. APPARATUS AND PROCEDURE A diagram of the apparatus used is shown in Fig. 1. Details of its construction, testing and use are described elsewhere. Careful selection of materials, extreme cleanliness and rather elaborate electrical insulation and shielding were necessary to obtain reproducible results (15 percent). Both streaming potential and streaming current were measured with an electrometer. The design of the foam generator developed for this work is novel (Fig. 2). SPEJ P. 359ˆ

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3