Visualization of Oil Recovery by Water-Alternating-Gas Injection Using High-Pressure Micromodels

Author:

Sohrabi M.1,Tehrani D. H.1,Danesh A.1,Henderson G. D.1

Affiliation:

1. Heriot-Watt U.

Abstract

Summary The use of WAG (water-altemating-gas) injection can potentially lead to improved oil recovery from the fields. However, there is still an incomplete understanding of the pore-scale physics of the WAG processes and how these lead to improved oil recovery. Simulating the three-phase flow for prediction of the WAG performance in oil reservoirs is an extremely complex process. The existing three-phase relative permeabilities used in simulation are very approximate and do not properly account for the effects of fluid interfacial tension and rock wettability. Network model simulators are being developed to enable the prediction of three-phase relative permeability under different wettability conditions. However, such simulators need to be verified against experimental observations. In this paper, we present experimental results and discussion of a series of capillary-dominated WAG tests carried out in glass micromodels with wettability conditions ranging from water-wet to mixed-wet and oil-wet. Pore level fluid distribution and flow mechanisms were studied, and fluid saturation, at different stages of the experiments, were measured. The results showed that, under any of the wettability conditions, oil recovery by alternating injection of WAG was higher than water or gas injection alone. WAG recovery was observed to be higher for the oil-wet model than that in the mixed-wet one, which in turn was higher than that in the water-wet micromodel. Given enough time and more cycles of WAG injection, the recovery of the mixed-wet model seems to catch up with that of the oil-wet model.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3