A New Pulsed Neutron Sonde for Derivation of Formation Lithology and Mineralogy

Author:

Pemper Richard R.1,Sommer Alan2,Guo Pingjun,Jacobi David2,Longo John,Bliven Steve2,Rodriguez Eliseo2,Mendez Freddy2,Han Xiaogang1

Affiliation:

1. Baker Atlas

2. Baker Hughes

Abstract

Abstract A new openhole logging service, RockViewSM, has been developed which provides lithological and quantitative mineralogical information for accurate formation evaluation. The assessment begins with elemental formation weights and follows with an interpretation of lithology and mineralogy. Lithologies are divided into general categories including sand, shale, coal, carbonates, and evaporites. Potentially identifiable minerals are quartz, potassium-feldspar, albite, calcite, dolomite, siderite, anhydrite, illite/smectite, kaolinite, glauconite, chlorite, pyrite, and others. The logging system utilizes an electronic pulsed source to send high energy neutrons into the surrounding formation1–8. These neutrons quickly lose energy as a result of scattering, after which they are absorbed by the various atoms within the ambient environment. The scattered as well as the absorbed neutrons cause the atoms of the various elements to emit gamma rays with characteristic energies. These are measured with a scintillation detector, resulting in both inelastic and capture gamma ray energy spectra. A matrix inversion spectral fit algorithm is used to analyze these spectra in order to separate the total response into its individual elemental components. The prominent measured elements associated with subsurface rock formations include calcium, silicon, magnesium, carbon, sulfur, aluminum, and iron. Potassium, thorium, and uranium are measured separately with a natural gamma ray spectroscopy instrument9–11. The tool response is characterized for each individual element by placing it into formations of known chemical composition. Interpretation of the data begins with an assessment of the elemental formation weights, which then leads to a determination of lithology and mineralogy. Each step in the process is guided by the examination of ternary plots containing selected elements. Magnesium is an extremely important part of the interpretation process since it distinguishes dolomite from calcite and helps to identify various types of clay. Data from field examples is presented in order to illustrate the effectiveness of this technology. Introduction Traditional formation evaluation using log data involved interpretation of measurements that included natural gamma ray, neutron porosity, density, and resistivity. Over the past decade, there has been an increase in the number of petrophysicists who desire additional information, including mineralogy-based logs. Such data helps resolve ambiguities in the traditional methods and opens up the possibility for new deductions to optimize hydrocarbon production. If one is concerned about calcite or anhydrite cement in a sand matrix, for example, such suspicions can be resolved through a measurement of the amounts of Ca and S. Knowledge of the formation matrix components can also be used to provide a more accurate porosity through an enhanced interpretation of the neutron and density data. In general, the interpretation of any measurement can be enhanced when the formation matrix is understood. A deductive approach to mineralogy is described herein, which begins by identifying the general lithology associated with each tool measurement as follows:Elements ? General Lithology ? Specific Lithology ? Mineralogy

Publisher

SPE

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3