Reviving ADNOC Wells Using Autonomous Inflow Control Valve (AICV) Technology

Author:

Berdiyev Dr. Y.1,Al Jasmi S.1,Mahboob T. N.1,Al-Fatlawi A. B.2,El-Fattah M. Abd2,Brough R. B.2

Affiliation:

1. ADNOC Onshore

2. InflowControl

Abstract

Abstract ADNOC onshore's reservoir development strategy has historically been to drill barefoot wells and perform interventions as production deteriorates. Barefoot wells increase flexibility, lower cost, and reduce operational risk, but unbalanced fluids influx, and early water/gas breakthrough may reduce oil recovery. Autonomous Inflow Control Valve (AICV) technology tackles these limitations while eliminating/reducing the associated risks/costs with other inflow control technologies. This paper presents a series of successful pilot workover interventions deployed in the UAE to revive wells and boost recovery. Successful execution of four UAE onshore assets (two gas shut-off, two water shut-off applications) as part of a pilot to assess and approve the AICV technology initiated a new paradigm in restoring oil recovery and production accessibility of inactive and/or low performing wells. Well selection required screening, robust simulation modelling, and assessments of accessibility and downhole integrity. Stringent reviews of required rig operations, lower completion (LC) designs, and various completion components were conducted. The integrated work between various business unit domains helped create new workflow chains and resulted in the implementation of several best practices in planning, design, execution, and evaluation. LC configurations were optimized by T&D modelling, time lapsed simulations, and the use of reservoir data obtained during rig interventions. The design challenges encountered with the limitation on number/type of isolation packers, segmentation, type of shoe, use of a light workover rig, risk mitigations, field execution, well flowback, best practices, and lessons learned are all addressed highlighting how a shut-in well was revived, and other wells observed drastic improvements in production performance. The impact this has on lowering carbon emissions and associated costs by reducing the need for electricity for lifting, handling, treatment, storage, disposal of water and potential venting/flaring gas and risky interventions is demonstrated. Standard practices and boundaries were successfully stretched to truly show the value of the AICV technology; more than double the usual operator standard of isolation packers were deployed in one well after thorough planning, risk evaluations, and effective collaboration. All four wells successfully reached TD without additional complexities or QHSE incidents. Preliminary assessments for the first well, for example, indicated GOR almost halved while enabling oil production at more than double the pre-shut-in rates. Substantial reductions in carbon emissions and costs are expected over the life of the well. The paper introduces the first ever wells installed with AICVs in the UAE and documents newly established best practices for AICV planning and execution. With hundreds of similar applications globally, the opportunity to revive shut-in wells, reduce unwanted fluid production, and improve ultimate recovery, while lowering costs and carbon emissions is evident. The operator plans to further deploy the AICV across its applicable assets to find hidden barrels from existing reservoirs, and to proactively manage their reservoirs in new wells.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3