A New Ensemble Machine-Learning Framework for Searching Sweet Spots in Shale Reservoirs

Author:

Tang Jizhou1,Fan Bo2,Xiao Lizhi3,Tian Shouceng3,Zhang Fengshou4,Zhang Liyuan5,Weitz David5

Affiliation:

1. State Key Laboratory of Marine Geology, Tongji University

2. Motorola Solutions

3. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing

4. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University

5. John A. Paulson School of Engineering and Applied Sciences, Harvard University

Abstract

Summary Knowing the location of sweet spots benefits the horizontal well drilling and the selection of perforation clusters. Generally, geoscientists determine sweet spots from the well-logging interpretation. In this paper, a group of prevalent classifiers [extreme gradient boosting (XGBoost), unbiased boosting with categorical features (CatBoost), and light gradient boosting machine (LightGBM)] based on gradient-boosting decision trees (GBDTs) are introduced to automatically determine sweet spots based on well-log data sets. Compared with linear support vector machines (SVMs), these robust algorithms can deal with comparative scales of features and learn nonlinear decision boundaries. Moreover, they are less influenced by the presence of outliers. Another prevailing approach, named generative adversarial networks (GANs), is implemented to augment the training data set by using a small number of training samples. An extensive application has been built for the field cases in a certain oilfield. We randomly select 73 horizontal wells for training, and 13 features are chosen from well-log data sets. Compared with conventional SVMs, the agreement rates of interpretation by XGBoost and CatBoost are significantly improved. Without special preprocessing of the input data sets and conditional tabular GAN (CTGAN) model fine tuning, the fake data set could still bring a relatively low agreement rate for all detections. Finally, we propose an ensemble-learning framework concatenating multilevels of classifiers and improve agreement rate. In this paper, we illustrate a new tool for categorizing the reservoir quality by using GBDTs and ensemble models, which further helps search and identify sweet spots automatically. This tool enables us to integrate experts’ knowledge to the developed model, identify logging curves more efficiently, and cover more sweet spots during the drilling and completion treatment, which immensely decrease the cost of log interpretation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3